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A pressure-based method is presented for discretizing the unsteady incomp-
ressible Navier—Stokes equations using hybrid unstructured meshes. The edge-based
data structure and assembly procedure adopted lead naturally to a strictly conserva-
tive discretization, which is valid for meshes composed-efded polygons. Partic-
ular attention is given to the construction of a pressure—velocity coupling procedure
which is supported by edge data, resulting in a relatively simple numerical method
that is consistent with the boundary and initial conditions required by the incom-
pressible Navier—Stokes equations. Edge formulas are presented for assembling the
momentum equations, which are based on an upwind-biased linear reconstruction of
the velocity field. Similar formulas are presented for assembling the pressure equa-
tion. The method is demonstrated to be second-order accurate in space and time for
two Navier—Stokes problems admitting an exact solution. Results for several other
well-known problems are also presented, including lid-driven cavity flow, impul-
sively started cylinder flow, and unsteady vortex shedding from a circular cylinder.
Although the method is by construction minimalist, it is shown to be accurate and
robust for the problems considered 2001 Academic Press

Key Wordsunstructured grids; incompressible flows; unsteady flows; edge-based
methods.

1. INTRODUCTION

Over the past decade or so edge-based finite volume methods have emerged :
interesting alternative to the conventional methods for discretizing conservation laws on
called hybrid or mixed element meshes. Edge-based assembly methods are distingui
from both traditional finite element and finite difference methods in that the asseml
of the discrete equations is performed by a sweep over edges, whereas with a tr
tional finite element or finite difference approach assembly is performed by a sweep ¢
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elements or nodes, respectively. Perhaps the most compelling prospect for such n
ods is that assembly can be simply performed for arbitrary polygonal (or polyhedral
three dimensions) meshes, since the only requirement is that the edges (or surfaces) «
tessellation form closed control volumes. Furthermore, edge-based assembly is effic
requiring only one flux evaluation per edge and naturally leads to a strictly conservat
discretization.

The majority of work to date on edge-based methods [1-4] has been associated witt
compressible Euler and Navier—Stokes equations where a thermodynamic equation of
is available to link the pressure field to a conserved density field. As the incompress
limit is approached, the mass conservation equation changes from an evolution equc
for density to a constraint equation imposing a divergence-free condition on the veloc
field. This divergence-free constraint is independent of time and governs the evolution
“special,” purely elliptic pressure field which “ensures that the resulting acceleration fie
is divergence-free and thus that the velocity remains divergence-free” [5].

Recently, Thomadakis and Leschziner [6] proposed a first-order edge-based pres:
correction method for the steady incompressible Navier—Stokes equations in the spir
the segregated implicit family of pressure-based methods (SIMPLE, SIMPLER, etc.) ot
inally proposed by Patankar [7]. The present work is an extension of the method propa
by Thomadakis and Leschziner [6], but with the important difference that an equation
pressure rather than its correction is proposed to couple the pressure and velocity fi
It will be shown that this choice, when made in conjunction with a semistaggered ve
able storage arrangement, leads to a method that does not raduioemodifications to
avoid a checkerboard pressure field nor does it require a boundary condition for pres:s
Consequently, the method presented here exhibits the minimum level of complexity
linking the pressure and velocity fields in an edge-based incompressible Navier—Stoke
gorithms. The minimalist viewpointis evident in many other aspects of the algorithm as w
viz.,

e Fluxes are evaluated using linear reconstruction and the trapezoidal rule.
e No attempt is made to conserve mass to machine precision.

e No pressure or velocity correction step is undertaken.

e Jacobi iteration is adopted as the linear solution method.

The implicit two-stage time integrator does, unavoidably, introduce a measure of comple:
to the overall unsteady algorithm. However, the first-order implicit time integrator and t
steady-state form of the algorithm are special cases that can be easily recovered
the general formulation. Additionally, the initial and boundary conditions required by tt
method are identical to those required by the Navier—Stokes equations. Several rel
works addressing element-based finite volume methods have also appeared recently |
literature [8-10].

2. BASIC CONSERVATION LAWS

The equations governing fluid dynamics stated in weak coordinate-free form [11] fo
finite volume 2 with boundaryl” are given by

3/WdQ+f[F(W,n)—G(W,VW,n)]dr+/ BdQ =0, (1)
ot Q r Q
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where

W = [p, p\]"

F(W,n) =W(v-n)
G(W, VW, n) = [0, 1]"
t=n-T.

Adopting the incompressible form of the Navier—Poisson law as the constitutive relati
for the fluid gives

T = —pl + u(VV+ V), )

whereT and| are the stress and identity tensors, respectivelyvdhis the transpose of
Vv. In Eqg. (1),W is the vector of conserved variabldsand G are flux vectorsB is the
vector of volume sources, andt are the flow velocity and stress vectors, anis the
unit normal vector. The variables 1, andp denote the fluid density, viscosity, and flow
pressure, respectively.

A number of methods for establishing the necessary algorithmic linkage between pi
sure and velocity for the incompressible Euler and Navier—Stokes equations have &
developed and can be broadly classified as coupled direct discretization [12], artificial cc
pressibility [13], or pressure based [7]. The first of these methods is seldom used bec:
of prohibitive memory and CPU requirements when applied to large three-dimensio
problems. The second of these methods has been widely used for several decades and
on the proposition of a finite speed for the propagation of a pressure signal. As a cor
guence of a finite propagation speed for pressure, artificial compressibility methods h
the same eigenstructure as the purely hyperbolic system associated with compressible
dynamics and consequently are obliged to retain the legacy of compressibility in the nun
ical implementation of the method. With the third method, a purely elliptic equation of tt
Poisson-type governing the pressure field (or its corregti®nan be derived in strong form
by manipulation of the continuity and Navier—Stokes equations or in weak form by man
ulating the finite volume form of the basic conservation laws in discrete form. The latt
approach utilizing the discrete finite volume form of mass and momentum conservatiol
taken here.

3. NUMERICAL METHOD

3.1. Connectivity and Assembly

The conservation laws are discretized in space using an edge-based assembly proc
that results in a strictly conservative discrete form that is valichfeided polygonal con-
trol volumes. Figure 1 illustrates a typical mixed-element mesh comprising quadrilate
and triangular control volumes. In addition to the main mesh, a reciprocal or dual mes!
constructed by connecting the centroids of the main control volumes which share a c
mon vertex. This system of main and dual control volumes forms a semistaggered ¢
arrangement where the velocity components are stored at the vertices of the main mest
pressure is stored at the centroids of the main control volumes as indicated in the figur
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@ v storage location

R p storage location
main mesh
— —— dual mesh

FIG. 1. Connectivity convention and storage locations for edge-based discretization.

will be shown that this arrangement provides sufficient algorithmic coupling of velocity ai
pressure, thus precluding the needddrhocmodifications to the basic conservation laws
such as artificial dissipation [14], momentum interpolation [15], or modified convection [
to achieve a smooth pressure field.

The spatial residuals of mass and momentum are evaluated by projecting the de
dent variables in Eqg. (1) onto a Cartesian basis and performing a counterclockwise i
gration around the contour surrounding the main and dual control volumes, respectiv
This integration is facilitated by forming a list of main edges comprising the tessell
tion with endpoints denoted0 andvl for each edge in the list. Each main edge in the
tessellation shares exactly two main control volumes with centroids denote@ apd
cl, which are arranged by construction such tttaties to the right of the directed line
from v0 to vl as shown in the figure. This connectivity convention allows the scaled ot
ward normal vectors for both the main and dual control volumes to be unambiguou
given by

main edge{ Neo = —(Yo1 — Yuo) I + (Xy1 — X40)] (3a)
Nc1 = —Nco

dual edge{ Nyo = (Yer — Yeo) I — (X1 — Xc0) | ’ (3b)
Ny1 = —MNyo

wheren.g andng; are the normal vectors outward from the main control voluo®esndcl,
respectively, and,q andn,; are the normal vectors outward from the dual control volume
v0 andvl, respectively.

With the connectivity associating nodes, edges, and control volumes specified in
fashion the computation of fluxes and the assembly of the semidiscrete equations ca
efficiently performed in a single sweep over all main edges in the tessellation. Furtherm
since the outward normal vectors differ only in sign for control volumes sharing a comm
edge, the per-edge flux components are computed only once and assigned concurrer
adjacent control volumes.
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Jacobi point iteration is adopted here as the solver for the linearized discrete equati
Consequently, the form common to all discrete equation sets is simply

A?p =1, (4)

where ¢ is the vector of generic unknowna? is the diagonal coefficient ap, andb?
contains source terms as well as off-diagonal neighbor contributions to the conserva
equations. Ultimately, all discrete equations are written in the form of Eq. (4). Consequen
the assembly procedure reduces to evaluaihgndb? for each dependent variable (i.e.,
u, v, orp) at each grid point in the domain. During assembly each edge makes contributi
to A? andb? with valid expressions for the conservation laws available only after all edg
in the tessellation have contributed and all control volumes have been closed.

3.2. Momentum Equations

Integrating the momentum equations over the dual control volumes leads to the semi
crete form

d
—(pvQ) + R =0, (5)
dt
where the spatial momentum residuals are given by
RY=>[pv(v-n) + pn—n- 7]+ BQ, (6)

wherer is the viscous stress tensor and the summation is taken over all edges formir
closed dual control volume. Per-edge contributions to the diagonal coefficient and sot
term, denoted by andb?, respectively, are given below for the convective, viscous, an
pressure fluxes forming the steady-state momentum balance. In the context of edge-b
methods the per-edge flux contributions are often referred to as “edge formulas.”

Convective flux. The momentum flux through a dual edge
[ov(v-m]e = [Vf]e (7

is evaluated using the trapezoidal rule in conjunction with a linear reconstruction [16]
the velocity based on the upwind valuewénd its gradientV. Sampling the edge mass
flux, fe, at the dual-edge midpoint yields

fe = g(VCO =+ Ve1) - Nyo, (8)

where the cell-centered velocitiegy andv.,, are taken to be the average of the main mesl|
vertex values surroundingp andcl.

Linearly reconstructing the edge velocity, at the dual-edge midpoint using upwind
data yields

if fo>0 Ve=Vyoo+ (VW) T elseve=V,1+ (VVW)y1-ly1, 9)

wherer is the vector from the main mesh vertex to the mid-edge sample point shown
Fig. 2. Recalling thah,; = —n,, the per-edge contributions to the convective flux are the
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FIG. 2. Integration path used for evaluating for convective fluxes.
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(assembling at0)

. Ae = fe Ac=0
It fe >0 { be = — fe((VV) 40 - F'v0) else{ Pe = — fe(Vor + (VV)u1 - 1) (102)

and (assembling atl)

ffe>0 | 10b
e { be = fo(Vyo + (VW)y0 - F00) - Fo1)- © Se{ Pe = fe((VV)u1 (10)

The velocity gradient tensafV is computed using Green’s theorem along the contour c
dual edges enclosing each velocity node as shown in Fig. 2. For a generic scalar vari
¢, Green’s theorem in the plane states

/ Vo dQ = ]§ ondr. (11)
Q r

AssumingvV is constant over dual control volumes and evaluating the contour integral
Eq. (11) using the trapezoidal rule, give the velocity gradient tensor,

du  du
) 0

w= | % (12)
dv v
ax  ay

where, for example, the derivativesdl are given by

aVv 1

& = —29 o Z(Vco + Vcl)(ycl - ch) (138.)
av 1

@ = — 2000 Z(Vco + Ve1) (Xe1 — Xco)- (13b)

As with the assembly of the conservation laws, the component¥ @afre evaluated by a
single sweep over all edges in the tessellation with valid expressions being established
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FIG. 3. Integration path used for evaluating for viscous fluxes an®p for pressure equation.

after all contour paths have been closed. Finally, it may be observed that the reconstruc
expressions, Eq. (10), recover the first-order upwind expressions when the velocity grac
is set to zero.

Viscous flux. The viscous stress vector at a dual edge
~[n-7le (14)
can be written for constant viscosity, divergence-free conditions as
—[n-7le = —uvV - nle, (15)
where the Navier—Poisson law has been used to rel&besV. Again, Green’s theorem is

used to evaluate the componenty®fover the edge are®,, shown in Fig. 3. After some
manipulation, the per-edge contributions to the viscous flux become

(assembling at0)

Ae = L(nvo - Nyo)

2Qe (16a)

be = Znge(nUO “Nyo)Vo1 — ZLQe(Vco = Ver) (Neo - Nwo)
and (assembling atl)
"

Ae = —(nuo : nvO)

2Q0 (16b)
be = L(nuo - Nyo)Veo + L(Vco — Ve1) (Neo * Nyo)-

2Q¢ 20

Pressure flux. The pressure flux at a dual edge

[pn]e 17)
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is evaluated using the trapezoidal rule giving the per-edge contributions
(assembling ai0)
1
be = _E(pco + pcl)nvo (18a)

and (assembling atl)

1
be = E(pco + pcl)nu0~ (18b)

3.3. Time Integration

An implicit Runge—Kutta method [17] is used to advance the velocity field governed |
the semidiscrete system

dw
—+R=0 19a
gt (19a)
according to the two-stage formula
WD = W" — At(B1oR" + p11RP) (19b)
WM = W" — At (Bo0R" + B2iRY + B2oR™), (19¢)

where the following set of weights yield a formally second-order-accurate method wk
Eq. (5) is a set of linear equations:

/310 = 0.0, ,311 = 0.2651 /320 = —0.0545 /321 = 0.7545 /322 =0.3.

Our experience has been that this two-stage method is stable and accurate for the in
pressible Navier—Stokes set while having the additional benefits of being self-starting
requiring evaluation of spatial residuals at only two time levels. Furthermore, the first-ort
implicit Euler method can be easily recovered as a special case of the two-stage methc
executing only the first stage wify; set to unity.

Adopting the notation introduced above for the point-iterative solution strategy the spa
momentum residuals in Eq. (6) are given by

RV = Av — b, (20)

and the system of nonlinear algebraic equations used to advance the velocity fietdl frol

tot® is then
Q @ Q1"
{v( P +A) —b} - {pv } . (21a)
AtBi1 AtBn

Similarly, the second stage of the Runge—Kutta method, which advances the velocity fi
t® to t"*1, is given by the system

n+1 n @
()= fzeco] o]

Atfar Atfor P2 Boz

In the following section Eq. (21) will be used in conjunction with mass conservation
derive a discrete equation governing the evolution of the pressure field.
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3.4. Pressure Equation

The mass conservation equation in semidiscrete form is
d
PO +R =0 (22a)
with the spatial mass residual given by

RO =) [pv-nle (22b)

and the summation taken over all edges forming a closed main control volume. For
incompressible flow, conservation of mass reduces to

> v-nle=0. (23)

Since the divergence-free constraint expressed by Eq. (23) is instantaneous for incomp
ible flows, the velocity appearing in Eq. (23) may be taken to be eitheor v*** during
the first and second stages of time integration, respectively.

In order to facilitate the construction of the pressure—velocity coupling relation, it
convenient to rewrite the discrete form of the momentum equations for the first and sec
stages of time integration, Eq. (21), as

1 6
~ 5(Pco + Pe1)N
v — D _ ( 2 ) (24a)
Z A‘;;S‘;zu +A e
1 (P + Pe)n n+1
VAL o 2‘);?27% , (24b)
AtBap +A

where the pseudo-velocity vecto¥s) andi"*?, for the first and second stages, respectively
are given by

V2N (D)
+b

YO — (A;ﬂél)im (25a)
(Atﬁu + A)

o B~ ) v

= n+1 ’ (25D)
ey
Atfar

whereb® andb™ are the spatial source terms excluding the pressure flux. These definitic
are similar in spirit of the pseudo-velocities used in the SIMPLER algorithm [7].

Recalling that the mass conservation equation, Eq. (23), is enforced as a sum over e
for a main control volume, a main-edge velocity vectqs, is proposed for facilitating
the coupling of the pressure and velocity fields. Appealing to the definition of the noc
pseudo-velocity given in Eq. (25), is taken at each stage of time integration to be of the
form

. 1
Ve = Ve — (m) o (V p)e dQe (26)
e e

AtB
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Taking Vp to be a constant ove®, allows the integral in Eq. (26) to be evaluated using
Green'’s theorem over the edge ar®a, shown in Fig. 3, with the path integral evaluated by
the trapezoidal rule. After some manipulation, the integral in Eq. (26) can be written s
cinctly in terms of main and dual control volume normal vectagg.andn,g, respectively.
The resulting relation is

; (Ve dQ2e = %((pcl — Peo)Nco + (Pu1 — Pu0)Nw0). (27)
Examination of Eq. (27) reveals th&p has a projection normal to the main edge and ¢
projection normal to the dual edge. When the main and dual edges are orthogonal, the se
term on the right-hand side of Eq. (27) vanishes identically when Eq. (26) is substitutec
Eqg. (23). This is simply because of the mass conservation involves only the projection of
velocity vector and pressure gradient normal to a main control volume edge. More gener:
the second term will persist when the main and dual edges of a mesh are nonorthoge
However, in the interest of establishing the simplest pressure—velocity coupling relations
that is supported by edge data the second term on the right-hand side of Eq. (27) is negle
here and the following directed pressure difference is adopted as the integral of the pres
gradient ovege:

o (Vple dQe = %(pcl — Pco)Neo. (28)
Neglecting the second term on the right-hand side of Eq. (27) may be interpreted ¢
reduction in order from a piecewise linear representation of the pressure field to a piece\
constant representation. Equation (28) is consistent with the SIMPLER algorithm wt
implemented on structured grids [7], as well as unstructured grids using element-based f
volume methods [8, 9]. Substituting Eq. (27) into Eq. (26) yields the following pressur
velocity coupling on a per-edge basis at any instant of time:

~  1{ (Pct — Pco)Nco

Substituting this edge velocity into the mass conservation equation, Eq. (23), the pres
equation for the first stage of time integration is given by

(&)

N (Pe1 — Peo)Neo - rIco>

E (Ve - Neo) — =0. (30)
( Z(A‘;/S;ll + A)e

Following the notation used to assemble the discrete form of the momentum equations
per-edge contributions to the pressure equation can now be stated for the first stage of
integration. They are

@
As = }( Nco - Neo >
- Q
2 (A/;ﬁll + A)e

1 Neo - N @

c0 * flcO & 1)
SN 7T oo . AN Pc1 — (Ve - Nco)

2 (A/;ﬂn + A)e)

(assembling at0)

(31a)
be =
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and (assembling atl)
@
1( Neo - Neo )
Ae=s| Zm o
(Atﬂu + A)

@

1 Neo - N N

be = z() Pro + (e - o).
(Atﬁ11+A)

(31b)

Similarly, the per-edge contributions to the pressure equation for the second stage of 1
integration are obtained by replacigigi with B, andt® with t"*1 in Eq. (31).
The edge values appearing in Eq. (31) are interpolated from main mesh vertex data

Q Q Q
(gtﬂ + A) 1- (Zt,s + A) n (gtﬂ + A) (32a)
Qe 2 QnO in
o1 N
Ve = E(Vno + V1), (32b)

where the area-weighted interpolation appearing in Eq. (32) properly accounts for
different control volume areas involved in the interpolation [6].

3.5. Boundary Conditions

Because of the semistaggered grid arrangement and the pressure—velocity coupling
cedure described above, no boundary or initial conditions for pressure are required by
present algorithm. This is consistent with the basic set of conservation laws, Eq. (1), wf
require only the specification of initial and boundary conditions on the velocity field [5
Furthermore, the decomposition implied by Eq. (24) is not performed for an edge on
domain boundary since no pressure—velocity coupling is sought across boundary ed
Consequently, when the pressure equation is assembled at control volumes adjacent t
domain boundary, the physical velocity flux leaving the domain through a boundary ed
(v- n)., appears naturally in place of the pseudo-velocity {fuxn)s appearing in Eq. (31).
Therefore, the global mass flux

jé v-ndl (33)
r

naturally appears in the discrete equation for pressure. Again, this is consistent with
basic conservation laws, where the global mass flux must be zero to satisfy the solvab
constraint associated with the incompressible Navier—Stokes equations [5].

Although no boundary condition is required by the pressure equation presented h
inspection of Eq. (32) shows that values&fv, and2 are required at boundary nodes to
evaluate the interpolation formulas. To this end, dual control volumes are constructe
the domain boundary to evaluate the necessary fluxes, source terms, and time fragmen
each boundary node as shown in Fig. 4. The correspondence of main edges, dual edge:
normal vectors is maintained at the boundary by the edge-based data structure, alloy
the boundary control volume fluxes to be evaluated and coefficients to be assembled ir
same edge sweep used to assemble interior nodes. Finally, Dirichlet boundary condit
are imposed on the velocity vector at the domain boundary.
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FIG. 4. Dual control volume on domain boundary.

3.6. Overall Algorithm
The overall solution procedure for an unsteady flow problem can now be summarize

1. Initialize fluid velocity state af', i.e.,Vv".
2. Compute temporal source terms for first and second stages of time integration
3. Solve first stage of time integrator.

3.1 Compute spatial momentum residuals.

3.2 Compute/?.

3.3 Computep® using Jacobi point iteration.

3.4 Compute/? using Jacobi point iteration.

3.5 Return to 3.1 until convergence criteria are met.
4. State is nowy, p,); begin next stage.
Add temporal source term &b
6. Solve second stage of time integrator.

6.1 Compute spatial momentum residuals.

6.2 Compute/*.

6.3 Compute™?! using Jacobi point iteration.

6.4 Compute/"** using Jacobi point iteration.

6.5 Return to 6.1 until convergence criteria are met.
7. State is now\(p,)"*1; go to next time step.

o

The following special cases of the unsteady algorithm may be noted.

1. For first-order time integration execute only the first stage ithset to unity.

2. For steady-state problems execute only the first stage for one time stefatvgith to
infinity.
Since the momentum and pressure equations are solved iteratively in a sequential fas
for each stage, underrelaxation is incorporated into the algorithm to retard change
the solution (principally the velocity field) from iteration to iteration in the outer loop
Relaxation is implemented according to

Avbrd-o®  Pocbrd—wi (34)
o o o o

wherev* andp* are the stored values of velocity and pressure from the previous outer ite
tion andais the relaxation coefficient [9]. When< 1, the diagonal coefficient of the linear

system is enhanced, resulting in a more diagonally dominant and well-conditioned sys
of linear equations. The preconditioning implied by Eg. (34) essentially results in a tra
off between inner loop convergence, where a low relaxation factor strongly preconditic
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the linear systems of equations, and outer loop convergence, where a low relaxation fz
retards the convergence of the coupled system of conservation laws. Since a rudimer
linear equation solver (Jacobi iteration) is used in the present method, the preconditior
implied by Eq. (34) significantly enhances the performance of the algorithm. Of cour:
other more sophisticated linear solvers could be implemented.

4. NUMERICAL RESULTS

In order to determine the accuracy and performance of the present method, a numb
well-known Navier—Stokes problems are solved. For problems admitting exact solutio
thelL; measure of the error norm is adopted,

1 N
€ = N ; |¢computed_ ¢exact|» (35)
whereg is a generic dependent variable (i&.y, or p) andN is the number of unknowns.

Buoyancy-Driven Cavity Flow

Figure 5 shows the computed solution for the buoyancy-driven cavity flow problem |
10, 18] atRe= 10 using a hybrid quadrilateral-triangular mesh where the interior of th
domain was triangulated using a Delaunay method [19]. The pressure field is shown t
smooth in the figure. Figure 6 shows a comparison of the computed and exact soluti
atRe= 10 using a 106« 10 uniform quadrilateral grid. The agreement is seen to be quif
good. Figure 7 shows the convergence of the method with mesh refinement for a far
of uniform quadrilateral and hybrid meshesRe#=1 and 1000. Tables | and Il give the
order of the accuracy exponent computed from the data of Fig. 7. The method is see
be second-order accurate in space. Although not shown in the figurk; theasure of
mass conservation error has an order of accuracy exponent greater than 3 for the «
shown.

FIG. 5. Hybrid mesh and computed solution showing velocity vectors and pressure contours for buoyan
driven cavity flow atRe= 10.
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0.6

exact, y=0.5, Re=10

® u computed
® v computed
& p computed

] 0.2 0.4 0.6 0.8 1

X

FIG. 6. Computed and exact solutions for buoyancy-driven cavity floR@& 10 on a 10< 10 uniform
quadrilateral mesh.

Decaying Vortex Flow

Figure 8 shows the computed solution for the decaying vortex problem [20, 21]
Re=100 using a 1& 10 uniform quadrilateral mesh. The pressure field is shown to k
smooth in the figure. The solution shown in the figure corresponds=t82, when the
velocity field has decayed to half its initial value. The figure also shows a comparis
of the computed and exact solutionsRe= 100 using the same mesh. The agreemer
is seen to be quite good. Figure 9 shows the convergence of the method with mesh

a b
G—>0u, Re=1.
te-02 | |3y 1e-02

&—e u. Re=1000.
B—3v, Re=1000.
——a p. Re=1000.

] / 1 2 re-0s} ]

1e=04 | / | te-04 | ]

1e-02 1e-01 1e-02 1e=01
Ax 1/sart{N)

€, error norm
e, error norm

FIG. 7. Error norms versus mesh spacing for buoyancy-driven cavity flow (a) for a family of uniform quadr
lateral meshes and (b) for a family of hybrid meshes.
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TABLE |
Spatial Order of Accuracy for Buoyancy-Driven
Cavity Problem on Uniform Quadrilateral Meshes

Variable Re=1 Re= 1000
u 1.9 2.1
v 1.9 2.1
p 1.9 2.0

time-step refinement for a family of uniform quadrilateral meshes and a series of til
steps atRe=100. Table Il gives the order of accuracy exponents computed from tt
data of Fig. 9. The method is seen to be second-order accurate in time and space fol
problem. Again, although not shown in the figure, the method is higher order in me
error.

Lid-Driven Cavity Flow

The computed velocity field for lid-driven cavity flow &e= 1000 using an 8& 80
uniform quadrilateral grid is shown in Fig. 10. Benchmark results [22] for the same proble
are shown for comparison. Agreement with the benchmark data is quite good. The ste:
state convergence performance of the method is also shown in the figure. The relaxe
values used for this problem are 0.80 and 0.95 for velocity and pressure, respectively.
ability to use essentially unrelaxed values for pressure is a significant advantage offe
by methods presented here in contrast to the pressure-correction methods, which typi
require much lower relaxation values for convergence [10]. Timing results for this proble
indicated that 0.33 CPU second per outer iteration was required on a single processor A
EV6 workstation rated at 1.0 GFLOPS requiring a total CPU time of 330 seconds to gene
the convergence history shown in Fig. 10.

Impulsively Started Circular Cylinder Flow

The computed length of the recirculation region in the wake of an impulsively start
circular cylinder aRe= 40 is shown in Fig. 11. Computations were done using ax160
guadrilateral grid with appropriate boundary conditions imposed at the symmetry bound
[17]. The outer domain boundary was located 20 diameters away from the cylinder wh
free-stream conditions were imposed on the velocity field.

TABLE Il
Spatial Order of Accuracy for Buoyancy-Driven
Cavity Problem on Hybrid Meshes

Variable Re=1 Re= 1000
u 1.9 2.2
v 1.9 2.2

1.4 2.1
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TABLE 11l
Spatial and Temporal Order of Accuracy
for Decaying Vortex Problem atRe= 100

Variable Spatial Temporal
u 3.3 1.9
v 3.3 1.9
p 2.8 13

0.4

—— eanct, y=x/4, t=22.0, Re=100
® u compul
B v computed
# p cempuied

0.2+

] /
-02 / J
Q 0.5 1 1.5

=0.4

FIG.8. Computed velocity vectors, pressure contours, and comparison with exact solution for decaying vo
flow atRe= 100 and = 32.0 on a 10« 10 uniform quadrilateral mesh using Runge—Kutta time integration, with
At=16.0.

a T b
e 0, Re=100 e
®—8 v, Re=100 '
S Res ®—8 p, Re=100
le-03 | [$—9 P Re=100 1e-03 1
3
g Te-04 | ] £
5 2
¢ o
8 £
: @
'y o
le-04 | E
1e~05 4
1e-06 .
N e-02 Te-01 16201 Te+02
Ax At

FIG.9. Errornorms for decaying vortex flow Re= 100 and = 32.0 (a) for a family of uniform quadrilateral
meshes using Runge—Kutta time integration, with= 1.0, and (b) for a series of time steps using Runge—Kuttz
time integration on an 8@ 80 uniform quadrilateral mesh.
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a 1o r - v r b 1e+00 T T T T

computed safution, Re=1000

u residual
v residuol
—— p-residual

®u ot x=0.5, ref [22]

0s | = v at y=0.5, ref [22]

1e-01

1e-02 |

residuat

1e-03 t

1e-04 |

1e-05

L ) s M
¢ 200 400 600 800 1000

Xy iteration

FIG. 10. (a) Computed and benchmark solutions for lid-driven flovRat= 1000 on an 8 80 uniform
quadrilateral mesh; (b) convergence history.

The results obtained using both the first-order Euler implicit and the second-order impl
Runge—Kutta method are shown in the figure along with experimental data [23]. Agreem
with the experimental data is reasonably good using either the first- or second-order met
once atime-step-independent solution is obtained. Time-step independence is achieved
At=0.2 and 0.01 for the second- and first-order methods, respectively. Timing results

a 3.0 : : b 30 . .
Euler, At=0.01 Runge-Kutta, At=0.2
Euler, At=1.0 Runge~Kutta, At=1.0
e data, ref [23] ® dato, ref {23]

length

FIG. 11. Wake recirculation length for an impulsively started circular cylindeRat= 40 on a 100< 60
guadrilateral mesh: (a) Euler time integration; (b) Runge—Kutta time integration.
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FIG. 12. Lift and drag time histories for a circular cylinder with vortex sheddinBet= 200 on a 200« 120
quadrilateral mesh using Runge—Kutta time integration, witk= 0.1.

this problem indicated that the second-order implicit Runge—Kutta method required appt
imately one-third the total CPU time to produce time-step-independent results compare
the first-order implicit Euler method.

Vortex Shedding from a Circular Cylinder

The time history of lift and drag on a circular cylinderRe= 200 is shown in Fig. 12.
Computations were done using a 20020 quadrilateral grid with the outer domain
boundary located 30 diameters away from the cylinder where free-stream conditions are
posed on the velocity field [17, 21, 24]. A small asymmetric perturbation was incorporat
into the initial conditions to initiate vortex shedding. Table IV summarizes and compat
the present results with previously reported computatiorReat 200. Agreement with
previous studies is quite good. The close agreement with Rogers [25] is noteworthy si
a fifth-order method was used in that study.

TABLE IV
Vortex Shedding Parameters for a Circular Cylinder at Re= 200

Source C, Co St
Rosenfelckt al. [24] +0.65 1.314+-0.04 0.20
Marx [17] +0.62 1.35:£0.04 0.195
Rogers [25] +0.68 1.33+0.05 0.19

Present +0.68 1.33:0.04 0.196
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5. CONCLUSION

The method presented here has been demonstrated to be accurate and robust for t
compressible Navier—Stokes problems considered. The development of a pressure—vel
coupling procedure which is supported by edge data is at the heart of the method ar
largely responsible for its success. The simplicity of the overall algorithm, its consister
with the boundary and initial conditions required by the Navier—Stokes equations, and
ability to accommodate arbitrary meshes are perhaps its most appealing features. Fir
the test cases reported here offer a firm foundation for extending the method to incl
time-dependent meshes, multigrid acceleration, and solution-dependent grid refineme
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